Ozone absorption in the human nose during unidirectional airflow.
نویسندگان
چکیده
This study addresses the effect of gas flow rate and ozone (O(3)) concentration on the uptake of this air pollutant in the nose. A nasal exposure system was developed in which a constant flow of humidified air (V) containing a constant concentration of O(3) (C(inlet)) entered one nostril and then exited the other nostril while a subject closed the velopharyngeal aperture. Experiments were conducted on 10 healthy nonsmokers for whom O(3) concentration was measured at the inlet nostril and the outlet nostril to determine the fraction of inhaled O(3) that was absorbed into the nasal mucosa (Lambda(nose)). Lambda(nose) decreased from 0.80 +/- 0.02 to 0.33 +/- 0.02 (SE) when V was increased from 3 to 15 l/min and C(inlet) was fixed at 0.4 ppm. Analysis of these data with a mathematical model indicated that O(3) uptake was limited by diffusion reaction through mucus, rather than by convective diffusion through the respired gas. A small decrease in Lambda(nose) from 0.36 +/- 0.02 to 0.32 +/- 0.01 was also observed when C(inlet) was increased from 0.1 to 0.4 ppm at a fixed V of 15 l/min. This may have been due to nonlinear reaction kinetics between O(3) and reactive substrates in mucus or an active response by a physiological process such as mucus secretion or transepithelial water influx.
منابع مشابه
Noninvasive determination of respiratory ozone absorption: development of a fast-responding ozone analyzer.
We developed a chemiluminescent ozone analyzer and constructed an ozone bolus generator with the eventual goal of using a bolus-response method to measure noninvasively the longitudinal distribution of ozone absorption in human lungs. Because the analyzer will be used to sample gases within a single breath, it must have a sufficiently rapid response to monitor changes in ozone concentration dur...
متن کاملA Numerical Simulation of Inspiratory Airflow in Human Airways during Exercise at Sea Level and at High Altitude
At high altitudes, the air pressure is much lower than it is at sea level and contains fewer oxygen molecules and less oxygen is taken in at each breath. This requires deeper and rapid breathing to get the same amount of oxygen into the blood stream compared to breathing in air at sea level. Exercises increase the oxygen demand and make breathing more difficult at high altitude. In this study, ...
متن کاملLongitudinal distribution of chlorine absorption in human airways: a comparison to ozone absorption.
The bolus inhalation method was used to measure the fraction of inhaled chlorine (Cl(2)) and ozone (O(3)) absorbed during a single breath as a function of longitudinal position in the respiratory system of 10 healthy nonsmokers during oral and nasal breathing at respired flows of 150, 250, and 1,000 ml/s. At all experimental conditions, <5% of inspired Cl(2) penetrated beyond the upper airways ...
متن کاملNumerical simulation of airflow patterns in nose models with differently localized septal perforations.
OBJECTIVES/HYPOTHESIS The most typical complaints of patients with nasal septal perforation (SP) are nasal obstruction, crusting, and recurrent epistaxis depending on the size and site of the SP mainly due to disturbed airflow patterns. The objective of the study was to determine the influence of differently localized SPs on intranasal airflow patterns during inspiration by means of numerical s...
متن کاملThe fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia.
The canine nasal cavity contains hundreds of millions of sensory neurons, located in the olfactory epithelium that lines convoluted nasal turbinates recessed in the rear of the nose. Traditional explanations for canine olfactory acuity, which include large sensory organ size and receptor gene repertoire, overlook the fluid dynamics of odorant transport during sniffing. But odorant transport to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 91 2 شماره
صفحات -
تاریخ انتشار 2001